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The photoionization of perylene by tetracyanoethylene (TCNE) in liquid solutions is reconsidered within the
corrected energy scheme for a double channel electron transfer: to the ground and excited states of the produced
ion pair. The complex space dependence of a total (double channel) rate of multiphonon transfer is specified
and compared to the recently proposed monoexponential model. The fitting of the forward electron transfer
(ionization) is essentially improved, and the real electron coupling and tunneling parameters are firmly
established. The same has been done for the geminate recombination/separation kinetics, accounting theoretically
for the hot recombination experienced by 2/3 of the initially produced ion pairs. Only 1/3 of them is left for
subsequent thermal recombination and even less are left for their separation into free ions. The yields of the
latter, strongly dependent on the initial concentration of TCNE, are brought into reasonable coincidence with
the theoretical predictions by a renormalization of the empirically calibrated ion densities especially at large
concentrations. Altogether, this is a precedent spin-less treatment of photoionization well-fitted to the
experimental data at all times (from the excitation until charge separation), with a single set of varying
parameters.

I. Introduction

The excitation quenching by electron transfer in solution is
a distant reaction proceeding with the rate WI(r) at any distance
r between the reactants

In conventional Markovian theory it proceeds exponentially

where c ) [A] is the quencher concentration. According to
differential encounter theory (DET),1,2 the rate constant

is proportional to encounter diffusion coefficient D and the
effective quenching radius RQ(D) that was first specified long
ago for the exponential model of tunneling rate3

Here, σ is a contact distance where the rate (Wc) is maximal,
while l is the effective tunneling length. Unfortunately, the very
first application of such a Markovian DET to really studied
quenching of the pheophytin a fluorescence by toluquinone
showed that l is greatly overestimated.4

This paradox was resolved in a subsequent study of the similar
phenomenon but with much better resolution.5 It was proved
that Markovian asymptotics eq 1.2 is never reached in the
available time range. Only general non-Markovian quenching
kinetics is seen which is nonexponential and precedes the
exponential one:

The long time behavior of the non-Markovian time dependent
rate constant

was detected. From this expression where the second term
dominates in available time range the right value of RQ was
specified, and correct value of l was extracted from its
diffusional dependence.

In a later work,6 the experimental study of quenching was
extended even for shorter times up to the static quenching
following immediately after the pumping pulse. The exponential
static quenching starts with a rate constant

which is a kinetic rate constant equal to the first moment of
WI(r). Getting this constant from the initial quenching kinetics,
one can fit to it the ionization rate getting its main parameters
and keeping diffusion for fitting the rest of excitation decay.
The chemical system investigated here consists of perylene (Pe)
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in the first singlet excited state as electron donor in the presence
of tetracyanoethylene (TCNE) in acetonitrile.7 This is the most
exergonic system allowing the electron transfer not only in the
ground state ion pair but also in its excited states. It was shown
that at least one of them should be accounted for turning
ionization into double-channel reaction. Such a kinetics was
well-fitted, assuming that the forward electron transfer proceeds
not only to the ground state of the ion pair but also to the lowest
electronically excited state of it:

The subsequent backward electron transfer (ion recombination) in
such an obtained ion pairs [D+ · · ·A- ] and [D+ · · ·A- ]* accompanied
by diffusional charge separation is fitted in the next article,8

although not as well. The theory explains the low yield of
free ions due to their hot recombination but predicts much
slower accumulation of them than it is in reality and a bit
longer dissipation leading to a smaller free ion quantum yield.
Interestingly, the latter depends actually on the quencher
concentration c (see Table 3 in ref 7) but this phenomenon
was left unexplained. Here, we are going to eliminate all of
these weaknesses starting from the interpretation of the
ionization kinetics.

The theory will be revised here from the very beginning using
the new contact value for the reorganization energy

instead of the previously chosen (rather arbitrarily) λc ) 1.15
eV.6,8 As a matter of fact, λc is the main important parameter
determining the reorganization energy at any reactant separation,

The latter fixes the splitting of the reactant and product
parabolic terms, which is equal to 2λ at any given r (Figure 1).
The contact reorganization energy is usually estimated from the
Marcus theory of electron transfer in polar media:

where ε and ε0 are the static and optical dielectric permittivities
of the solvent. In acetonitrile, their values are known, ε ) 37.5,
ε0 ) 1.8, while the effective contact distance in Per/TCNE pair
is taken to be σ ) rD + rA ≈ 6 Å. The accuracy of this choice
is not crucial because the main electron transfer in such a system
being under diffusion control6 occurs far away from contact, at
quenching sphere of radius RQ . σ, and almost nothing happens
deep inside it, near the contact. On the contrary, the contact
reorganization energy λc, as well as the free energies of the
ground and excited state ions production, ∆G0 ) -2.14 eV and

∆G* ) -0.6 eV, and recombination to the ground state of the
reactants, ∆GR ) -0.69 eV, play an important role. They
determine all of the level crossings and the energy distances
between them (Figure 1). This ensured that the right specification
of λc is very important. Here, it is carried out spectroscopically.

The initial excitation of perylene in the experiment7 was
performed at 400 nm. The energy of the D f D* transition is
∆E* ) -∆GI - ∆GR ) 2.83 eV (∼439 nm) while the energy
of the straightforward excitation to the ground state ion pair is

The frequency of the charge transfer band (∼800 nm)7 in
Per/TCNE complexes allows us to estimate the contact value
∆E(σ) ) 1.55 eV directly from experiment and, thus, calculate
λc (eq 1.9) using eq 1.10. Being smaller than previously used,
it reduces the horizontal splitting of the parabolas in Figure 1A.

This makes the current consideration qualitatively different
from the previous one. The electron transfer to the ground state
ion pair becomes more activated and weaker, whereas the
competing transfer between excited states becomes almost
activationless and therefore more efficient. The former proceeds
in the inverted region, with the bell shaped rate W0(r) shifted

λc ) 0.86eV (1.9)

λ(r) ) λc[2 - σ
r ]

λc ) ( 1
ε0

- 1
ε)e2[ 1

2rD
+ 1

2rA
- 1

σ]

Figure 1. ( A) Electron transfer energy scheme of the Per/TCNE
system. The left parabolas represent the reactants while the ion pair
states are given by the right ones. (B) The same scheme for the phonon-
assisted electron transfer via crossing points representing the forward
(O) and backward (b) reaction.

∆E ) λ - ∆GR (1.10)
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out of contact, while the rate of the latter, W*(r), is quasi-
exponential acting only near the contact (see Figure 10 in ref
6).

Due to hot recombination, following initial photoexcitation
and electron transfer, only a small remaining fraction of the
survived radical ion pairs (RIPs) is subjected to subsequent
thermal recombination, accelerated by the encounter diffusion
of the counterions.8 The latter proceeds with the diffusion
coefficient D̃ which is identified with its analog for the neutral
particles D. Found here from the best fit of the DET1 to the
transfer kinetics, it was shown to be

How sensitive is this choice to the variation of D is shown
in Figure 6A. The result is just a bit smaller than the previously
obtained value D ) 3.05 × 105 cm2/s.6,8

The outline of this paper is as follows.
In section II, we will present the theory revising the forward

electron transfer kinetics in the frame of the new energy scheme.
The rates of phonon-assisted double channel electron transfer,
limited by dynamic solvent effect (DSE), will be specified as
functions of the free energies of ionization and reactants
separation. Then, the initial static ionization convoluted with
initial pumping pulse was fitted to the shortest experimental
decay to get not a single k0 but two rate moments: k0 ) Wd3r
and k2 ) W2d3r. By fitting to them the above rates, the main
electronic coupling in competing ionization channels as well
as an electron-phonon constant S (common for both) were
specified. The subsequent diffusion accelerated ionization was
fitted separately varying only diffusion coefficient, and the long
time decay with the time dependent constant (eq 1.6) was
reproduced at the right choice of D (eq 1.11). After the space
dependence of both ionization rates and all of the fitting
parameters were specified, the theory was compared with an
alternative one using the popular exponential model of a single
ionization rate. Finally, it is used for the calculation of the initial
distribution of ion pairs preceding their geminate recombination.

In section III, the backward electron transfer during ion
recombination and separation is treated within unified theory
(UT). This theory developed simultaneously in two pioneering
works9,10 and reviewed in ref 1 is actually an extension of DET
allowing to trace the farther evolution of ion pairs produced by
preceding ionization. The separation and recombination of these
pairs (RIPs) crucially depends on their initial distribution
(separation) prepared by ionization. UT describes both the initial
accumulation of RIPs and their subsequent dissipation. It states
that the initial ion accumulation should be linear in time and
concentration, but in present experiment, the linearity in
concentration is broken. It can be restored if the actual fraction
of the ion pairs accumulated at different quencher concentrations
is corrected, being multiplied on the factor γ(c) which is larger
than 1 at higher c. This may be the result of an additional
(straightforward) light excitation of RIPs that we ignored here.

The same renormalization is used here for fitting the
subsequent charge dissipation within the extended UT employed
the first time. The extension implies that the contribution of
hot recombination preceding the thermal recombination is
calculated analytically, assuming that the motion along the
reaction coordinates is rather fast (instantaneous). By fitting the
subsequent thermal recombination, all of the parameters of
the backward transfer are specified as well and used for the
restoration of the rate of ion recombination after thermalization.
The latter is used for the estimation of the free ion recombination

constant that can be verified by investigation of ion recombina-
tion in the bulk, following the geminate one.

The discussion of the results are presented in Conclusions.

II. Double-Channel Bimolecular Ionization

The distant electron transfer, modulated by the encounter
diffusion of the reactants, is well-described by the differential
encounter theory (DET). The measured intensity of perylene
fluorescence is proportional to the number of fluorescent
molecules N*(t):

where N0 is the initial number of excited molecules. This is
actually a convolution of their survival probability R(t) and the
quantity N0f(t) which is proportional to the instrument response
function (IRF)

The full width at half-maximum of IRF, 2(2 ln 2∆)1/2, is
known to be 200 fs, while the IRF center, tc ) 1.05 ps, is
obtained here from the fitting to the available experimental data.

It was shown in ref 6 that the fluorescent state is populated
by the vibrational relaxation from the primary excited vibronic
state to the lowest one. The population of the latter is actually
a convolution of its vibrational pumping, proceeding exponen-
tially with the time τV and the system response to the
instantaneous excitation N(t):

The fraction of excitations which escaped ionization up to
the time t, N(t), obeys the conventional equation of DET:1,2,11

For our system (perylene in acetonitrile), the excitation
lifetime τD is known to be τD ) 4.34 ns.

Here and below, the time dependent rate constant of the
forward electron transfer (ionization) is

The pair correlation function n(r,t) takes into account that
the remote transfer running with rate WI(r) is accelerated by
the encounter diffusion, represented by the operator L̂:

If there is no inter-reactant interaction, then the diffusional
operator L̂ ) D∆, while the initial and the boundary conditions
to eq 2.5 take the following form:

D ) 2.6 × 10-5 cm2/s (1.11)
N/(t) ) N0 ∫0

t
f(t′)R(t - t′) dt′ (2.1)

f(t) ) 1

√2π∆
exp(- (t - tc)

2

2∆2 )

R(t) ) ∫0

t
N(t - t') e-t′/τV dt′/τV (2.2)

Ṅ ) -ckI(t)N - N/τD , N(0) ) 1 (2.3)

kI(t) ) ∫WI(r)n(r, t)d3r (2.4)

ṅ ) -WI(r)n + L̂n (2.5)

n(r, 0) ) 1 and
∂n
∂r |

r)σ
) 0 (2.6)
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The double channel electron transfer rate

is an input data for the theory: the ground state ion pair appears
with the rate W0(r), while the same pair in its excited state is
produced with the rate W*(r).

A. Dynamic Solvent Effect. The general expression for the
phonon-less electron transfer rate at given exergonicity ∆G has
the well-established form1

It is constituted from the Arrhenius factor specified by
Marcus12 and the pre-exponent accounting for the dynamic
solvent effect (DSE).13-15 The latter establishes the upper limit
for W

which is the rate of reaching the crossing point from the bottom
of the well (by diffusional motion along the reaction coordinate).
If τ is short enough, then the reaction proceeds straight from
the equilibrated (thermal) state, with the rate specified from the
perturbation theory in the second order approximation with
respect to the electronic coupling V,

where L is the tunneling length. For the Per/TCNE system, it
was found to be6,8

and the same value will be used in this article.
It is known13 that the DSE rate for the phonon-less system

(Figure 1A) is

Here, τL is the longitudinal relaxation time of the solvent
polarization which assists the electron transfer. In fact, this
expression is just an interpolation of a much more complex free
energy dependence

Such a dependence first specified by Zusman13 was recognized
to be incorrect near -∆G ) λ, and another one was proposed
instead.16 The true dependence was specified numerically (for
λ ) 1 eV and room temperature) in our recent work,17 and its
analog for the new λ ) 0.86 eV is also presented in Figure 2.
The particular values for the two competing channels could be

taken from Φ(∆G) for one (∆G0 ) -2.14 eV) or another (∆G*
) -0.6 eV) arguments corresponding to their free energies.

B. Phonon-Assisted Electron Transfer Rates. The situation
is more complex when the electron transfer is assisted by
intramolecular quantum mode (Figure 1B) so that the ion pair
appears in one of the vibrational states of this mode: n ) 0, 1,
.... Neglecting DSE, one can specify the total rate of such a
multiphonon transfer between the electronic levels as a sum of
the particular channel rates weighted with the particle density
in the crossing points:

where the thermal distribution of excitations is

Here, ω is the vibrational frequency and S ) λq/pω, where
λq is the reorganization energy of the quantum vibration. As in
our previous paper, we fix pω ) 0.1 eV.

Assuming that the ion density is always thermalized by fast
vibronic relaxation and accounting for the DSE in both acting
channels, we have for the corresponding ionization rates:6

According to eq 2.9, U0 ∞ V0
2 while U* ∞ (V*)2. In eq 2.13b,

only V0 and V* together with S will be used later as the varying
parameters, keeping τ0 ) τ(∆G0) and τ* ) τ(∆G*).

Generally speaking, the vibronic states of ion products are
unstable and relax to the lower ones with the rate of vibrational
relaxation, 1/τV, that we assume to be the fastest one. In such a

WI(r) ) W0(r) + W/(r) (2.7)

W(r) ) U(r)
1 + U(r)τ

e-(∆G+λ)2/4λT (2.8)

W e
1
τ

e-(∆G+λ)2/4λT

U(r) ) V2

p
exp(-2(r - σ)

L ) √π
√λT

(2.9)

L ) 1.24 Å

1
τ
) 1

4τL
� λ

πT
(2.10)

τL

τ
) Φ(∆G

λ
,

λ
T) (2.11)

Figure 2. Free energy dependence of τL/τ calculated numerically at λ
) 0.86eV (solid lines). The blue and red lines correspond to the
reversible and irreversible transfer, respectively. The symbol b points
to the result of ref 18 .

W(r) ) ∫ ∑
n

2πV2(r)
p

e-SSn

n!
δ(q - q(n)(r))	0(q)dq

(2.12)

	0(q) ) (4πλT)-1/2 exp(- q2

4λT)
and q(n) ) λ + ∆G + npω

W0(r) ) ∑
0

∞ U0(r)e-SSn

n! + U0(r)τ0e
-SSn

exp[- (∆G0 + λ + pωn)2

4λT ]
(2.13a)

W*(r) ) ∑
0

∞
U*(r)e-SSn

n! + U*(r)τ*e-SSn
exp[- (∆G* + λ + pωn)2

4λT ]
(2.13b)
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case, the electron transfer is irreversible, and the function 2.11
is a bit different. In fact, the irreversible DSE was first explored
analytically but only for a single point, ∆G ) -λ, where the
electron transfer is activationless and nonexponential.18 How-
ever, the long time electron transfer proceeds always exponen-
tially with a rate 1/τ whose free energy dependence is calculated
here numerically and shown in Figure 2. Taking τL ) 0.5 ps in
acetonitrile, one obtains the following τ (Table 1) for all crossing
points for vibrationless ionization and recombination:

For simplicity, the same values of τ will be taken for all of
the vibrational repetitions of the crossing points ignoring the
difference in their activation energies. Since in the most of them
the level accepting the electron is vibrationally unstable, we
preferred to use everywhere an appropriate τirr from Table 1.

C. Fitting to the Initial Quasi-Static Decay. Immediately
after excitation but before the partners (D* and A) start to move,
the excitations are subjected to the distant static decay. During
this short interval, one can set L̂ ) 0 and, integrating eq 2.5,
use the result, n(r,t) ) e-WI(r)t, in eq 2.4 to specify the static
rate constant:

where the kinetic rate constant

are the first two moments of the transfer rate.
At the very beginning, the excitation dissipation and the

corresponding ion pair accumulation proceed with the same
kinetic rate, kI(t) ) k0 ) const, and obey the following set of
equations:

where k0 ) kI(0), while N( is the number of accumulated ion
pairs. After a short pulse and fast vibrational relaxation (but
before the excitation decay), the total number of excitations
accumulated in the lowest vibrational sublevel is

Substituting this result into eq 2.16b instead of N*, we
conclude that after all of the excitations have been accumulated

in their ground state the share of ion pairs grows linearly with
time:

The growing of the ionic population becomes slower when
the recombination starts. Later on, when the recombination
exceeds the ionization, the accumulation of ion pairs gives way
to their dissipation considered below.

Using the short time approximation to static rate constant
(eq 2.14) when integrating eq 2.3, we get:

With this result substituted into eq 2.2, one accounts for the
system response on vibrational pumping in the quasi-static
approximation:

Substituting this R into the convolution 2.1, we have to fit
the real data having only three varying parameters, k0, k2, and
τV. Nonetheless, the quality of the fitting shown in Figure 3 is
quite reasonable, provided that the moments of the transfer rate
are

These parameters are the same for all curves in Figure 3,
while τV varies with c within the interval τV ) 0.14 ÷ 0.21 ps.

The validity region of the power time expansion (eq 2.14) is
restricted by the evident inequality

This time interval is obviously wider than that where initial
quasi-static kinetics was studied for specification k0 and k2 (see
Figure 3).

Getting true k0 and k2, one can set strict limitations on the
three microscopic quantities, V0, V*, and S, according to eqs
2.15 and 2.13a. This can be done in two steps. First, we find
the family of curves V*(V0) which correspond to different S
with k0(V0,V*,S) ) 530 Å2/ps keeping constant (Figure 4A).
Then, the variation of k2 along these curves is calculated from
its definition (eq 2.15) and the contour map k2(V0,V*) is
constructed (Figure 4B). One can easily see from this plot that
the k2 value closest to that estimated in eq 2.21 can be obtained
only near the lowest curve.

This allows us to specify immediately the best fit microscopic
parameters for the ground and the excited state ionization
channels which are indicated by symbol X in Figure 4A,B.

The relative contribution of the two channels given by the
ratio V*/V0 is 0.07 against 1.12 in our previous paper.6 However,
we will show later that the production of the excited ion pairs

TABLE 1

qI
(n) qI

*(n) qR
(n) qR

*(n)

∆G, eV -2.14 -0.60 -0.69 -2.23
τreV, ps 0.268 0.905 0.852 0.266
τirr, ps 0.188 0.804 0.791 0.186

k1(t) ) ∫WI(r)e-WI (r)td3r ≈ k0 - k2t + · · ·
(2.14)

k0 ) kI(0) ) 〈WI〉 ) ∫WI(r)d3r

and k2 ) 〈WI
2〉 ) ∫WI

2(r)d3r (2.15)

Ṅ/ ) N0 ∫0

t
e-(t-t′)/τVf(t′)dt′/τV - ck0N* - N*

τD

(2.16a)

Ṅ( ) N/ck0 (2.16b)

N/(τV) ) N0 ∫0

∞
dt∫0

t
e-(t-t')/τVδ(t')dt'/τV ) N0

(2.17)

P )
N(

N0
) ck0t (2.18)

N(t) ) e-∫0
t kI(t′)dt′-t/τD ≈ e-c[k0t-k2t2/2]-t/τD (2.19)

R(t) ) ∫0

t
e-c[k0(t-t')-k2(t-t′2/2]-(t-t')/τDe-t'/τVdt'/τV

(2.20)

k0 ) 530 Å3/ps and k2 ) 70 Å3/ps2 (2.21)

t , k0/k2 ) 7.6 ps

V0 ) 0.15 eV V/ ) 0.01 eV S ) 2.5 (2.22)
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is still effective near the contact due to the lower activation
barrier at λc ) 0.86 eV. At larger distances, the role of the
excited state channel becomes less prominent, and production
of the ground state ion pairs prevails.

D. Fitting to the Diffusion-Accelerated Ionization. The
microscopic parameters (eq 2.22) found in the previous section
are relevant only to the initial (static) phase of the ionization.
To describe the reaction at longer times, one has to account for
the acceleration of the forward electron transfer by encounter

diffusion of reactants. The only adjustable parameter of the
diffusional operator, D, and the optimal value of L can be found
by fitting the theory to the experimental data in the whole
available time domain. The results of this fitting are shown in
Figure 5, with the best fit parameters D ) 260 Å2 /ns ) 2.6 ×
10-5 cm2/s and L ) 1.24 Å.

Knowing all the rate parameters of ionization, we can now
predict how it proceeds at any diffusion (Figure 6A). To inspect
this prediction, one has to vary the solvent viscosity as it was

Figure 3. Fitting the initial accumulation and decay of the fluorescent state at different quencher concentrations.

Figure 4. (A) Family of curves satisfying the condition k0 ) 〈WI〉 )
530 Å3/ps at different S. (B) Contour map of k2 values calculated along
the curves shown in A. Symbol star-in-circle on both plots shows the
point with k0 and k2 closest to those established for Per/TCNE system
in eq 2.21. This point coordinates provide the microscopic ionization
parameters V, V*, S (eq 2.22).

Figure 5. (A) Fitting the whole ionization kinetics at different
concentrations with a double-channel rate WI(r) (V0 ) 0.15 eV, V* )
0.01 eV, S ) 2.5, L ) 1.24 Å) and diffusion coefficient D ) 260 Å2/
ns. (B) The same in the semilogarithmic scale showing the long time
N*(t) asymptotes.
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done a few times for other systems.4,5,19,20 The general form of
the long time quenching kinetics obtained with DET, from eq
2.3 to eq 2.6, is well-known:5,21

At given D, this is a single-parameter expression, used a few
times for fitting experimental data which are known in a
restricted time interval after excitation.5,22 In such a case, the
nonstationary (transient) term 8RQ

2 (πDt)1/2 should be accounted
for to get a correct RQ value from the best fitting of the longest
available time decay (Figure 6B). The proper RQ can be extracted
in the same way from the analytically available kinetic curves
which are known for any D and t (Figure 6A). The correspond-
ing RQ(D) dependence is shown in Figure 7. It is qualitatively
the same as that found experimentally in ref : quasi-linear in ln
(D) where the transfer is under diffusional control.

It is essential that, in the Per/TCNE system, RQ ≈ 9 Å is
significantly larger then the contact distance σ ) 6 Å where
reaction is sensitive even to spherical anisotropy of the reactants.
If the latter is pronounced, such a reaction may be pseudodif-
fusional provided it is contact (not remote). There is actually a
number of such radical reactions subjected sometimes to special
investigation reviewed in ref 23. But the electron transfer (unlike
proton one) is hardly contact. As far as we know, there is only
a single indication of such an opportunity when the kinetic
reaction constant is affected by diffusion (probably by the
rotational modulation of the stereospecific contact reaction).24

E. Double Channel versus Exponential Model. The system
under study was recently subjected to an alternative interpreta-
tion based on arbitrary interpolation between the long-time
asymptotes of static quenching (“in absence of reactants
mobility”) and that of the diffusional one which completes the
excitation decay. Thus, the intermediate (transient) effect is lost
as well as initial quasi-kinetic stage presented by eq 2.14.
Instead, N(t) diverges at t f 0, so that neither classical
Smoluchowski theory of contact quenching nor its Collins-
Kimball modification is reproducible. The latter operates with
a kinetic rate constant k0 which is not specified in a “theory” of
ref 25 as well as k2.

Nonetheless, the authors reached a reasonable agreement of
their theory with experimental data at large enough times
assuming an exponential shape of a single-channel ionization
rate

where a is the decay length analogous to our L. The reduction
of a true ionization rate (eq 2.8) to its exponential approximation
(eq 2.24) is only possible if one neglects DSE and the space
dependence of λ(r), setting τ ) 0 and λ ≡ λc. From fitting such
a theory to the same data as in Figure 5, both its parameters, ν
and a, were restored but not uniquely. There are two different
sets of these parameters proposed in Table 4 of ref 25. Besides,
they are different for all concentrations. Using some of them,
we show a few variants of exponential rate by the straight lines
in Figure 8. On the contrary, our double-channel rate 2.7 is
presented there by a single curve for all concentrations as it
should be.

It is clear from this comparison that the partial success of
fitting reached in ref 25 should be attributed to the occasional
proximity of our WI(r) to their exponents at r ≈ RQ ) 8.9 Å,
where the major diffusional quenching occurs. On the other
hand, the slope of the straight lines is clearly smaller than that
of a long tail of WI(r) ≈ W0(r) where it is actually 2/L. As a
result, the authors got a ) 2.8 Å that was recognized to be
“2-3 times larger than quantum chemistry estimations” which
are in close agreement with our L ) 1.24 Å obtained from the
best fit.

Having WI(r) known, one can calculate from it the total kinetic
constant of ionization k0 and its partial values for each channel:

Their free energy dependencies are shown in Figure 9 in
comparison with what was obtained for the rate constant of a
single channel exponential ionization considered in ref 25. The
latter is higher than our k0

0(∆Gi) which is hindered by DSE,

Figure 6. (A) Ionization kinetics at c ) 0.16 M for the different
encounter diffusions (solid lines) as well as their long time approxima-
tions (dashed lines). (B) The quality of this approximation to experi-
mental data (O) is shown by a solid line while its exponential asymptote
is indicated by a dashed line.

Figure 7. Diffusional dependence of the effective ionization radius
RQ. The RQ value for the system under study is shown by the horizontal
dash-dotted line.

ln N ) -t/τD - c[4πRQDt + 8RQ
2 √πDt] at t . RQ

2 /D
(2.23)

W(r) ) ν exp(-2r/a) ) Wce
-2((r-σ)/a) (2.24)

k0 ) ∫W0(r)d3r + ∫W*(r)d3r ) k0
0 + k0*

(2.25)

13534 J. Phys. Chem. A, Vol. 113, No. 48, 2009 Feskov and Burshtein



and narrower than that which is broaden and shifted left because
of λ(r) dependence. However, the kinetic rate constant happens
to be higher than the diffusional one in both approaches based
on the same ionization kinetics obtained experimentally. This
is one more confirmation that the point representing the system
under study is truly located on the diffusional plateau of the
Rehm-Weller plot, as was first stated in ref 26 (Figure 9).

Independent experimental evidence that ionization is under
diffusional control is given by violation of the Stern-Volmer
law obtained from the fluorescence quantum yield

If the quenching of the fluorescence is under kinetic control

that is κ ≡ k0 is concentration independent as in the original
Stern-Volmer law where 1/η is linear in c. However, in general,
eq 2.19 accounts for the transient effect via time dependent kI(t).
As a result, N(t) becomes nonexponential in time under
diffusional control when the transient effect is most pronounced.
In such a case, the linearity of the Stern-Volmer law is violated
(Figure 10) because the corresponding κ(c) is not a constant
but monotonously increases with c, starting from the lowest
diffusional value κ(0) ) kD ) 4πRQD, as has been indicated in
ref 6. The coincidence of the nonlinear concentration dependence
of 1/η with the experimental data obtained, either from pulse
or stationary measurements of η at any c, is an unambiguous
confirmation of the perfect fitting of ionization controlled by
encounter diffusion.

F. Initial Ion Distribution. Assuming that ions accumulated
during ionization neither move nor recombine, we can calculate
their distribution over starting distance. In fact, there are two
of them, for ion pairs accumulated in their ground state, m0(r),
and for those produced in the excited state, m*(r). According
to the conventional theory,1,9,10 they are

and their total number is m(r) ) m0(r) + m*(r). The normalized
total distribution shown in Figure 11 is just a sum of the partial
ones:

The excited radical ion pairs appear mainly at contact, being
quasi-exponentially distributed around it. This is a privilege of
the ions born in the normal Marcus region. On the contrary,
the ground state pairs Per+...TCNE- are produced in the inverted
region, because of the larger exergonicity. They are known to
have a bell-shaped distribution shifted out of contact.1 It is seen
from Figure 11 that at higher concentrations the contribution
of the excited pairs grows and the contact density increases.
This phenomenon facilitates the ion recombination that proceeds
faster at contact.

III. Ion Pair Accumulation and Recombination

A. Initial Ion Accumulation. As follows from eq 2.18, the
initial ion accumulation in kinetic regime proceeds linearly in
time, with a slope

Figure 8. (A) Rates of the ion pairs production in their ground (blue)
and excited (red) states with (solid) and without (dashed lines) account
for DSE. (B) The total rate WI ) W0 + W* (black line) and its
components (blue and red) in comparison with a few straight dashed
lines representing the exponential model 2.24 for some parameters given
in ref 25.

Figure 9. Free energy dependence of the kinetic rate constants for
both channels, k0

0 and k0* (blue lines), compared to that for the
exponential model (red line). The true diffusional rate constant for
diluted Per-TCNE system, kD ) 4πRQD, is shown by the star (*),
indicating the height of the diffusional plateau in the Rehm-Weller
plot.

η ) ∫0

∞ N/(t)
N0τD

dt ≡ ∫0

∞
R(t)dt/τD ) ∫0

∞
N(t)dt/τD )

1
1 + cκτD

(2.26)

N(t) ) e-t/τD-ck0t and
1
η
) 1 + ck0τD

m0(r) ) W0(r)∫0

∞
n(r, t)N(t)dt,

m/(r) ) W/(r)∫0

∞
n(r, t)N(t)dt (2.27)

f(r) ) m(r)

∫m(r)d3r
) f0(r) + f*(r) (2.28)

Ṗ ) ck0 (3.1)
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This linear time dependence is clearly seen in the experi-
mental data: Pexp(t) = At for all of the measured ion kinetics at
short times t ∈ [0,τL], where τL ) 0.5 ps is the time of dielectric
relaxation in acetonitrile. The corresponding A values, extracted
from the original experimental data at c ) 0.16, 0.32, 0.64,
and 0.9 M, are indicated in Table 2. Unlike ck0 in eq 3.1, the
four points A(c) do not fall on a straight line with a slope k0 )
530 Å3/ps but are scattered around this line (see Figure 12).

The reasons of this discrepancy are not obvious and may be
due to weaknesses of the present model. We however suggested
here that indirect calibration28 of the experimental Pexp(t) for c
) 0.16, 0.64, and 0.9 M may also be one of such reasons. One
can suggest an alternative calibration that makes Ṗ(c) linear.
Giving preference to the low concentration points (especially
to c ) 0.32 M used as the standard28), we eliminated the

scattering by multiplying the original experimental data on
numerical factor γ:

These γ’s (listed in Table 2) make Ṗ(0) ) ck̃0 linear in c but
with a higher ionization constant k̃0 ) A(c)γ(c)/c ) 842 Å3/ps
> k0 (solid line in Figure 12). If this is true, then there are more
ions appearing at the very beginning than the excitations
quenched during the same encounters.

In principle, such a situation is not impossible because our
model ignores the straightforward light-induced transition DA
f (D*)+ A-, as well as the radiative transitions (D*)+ A- f
D+ A-. The very existence of such a circle explains why the
total number of initially generated ions can exceed the number
of the excitations quenched by ionization. Although there is a
lack of experimental data related to this phenomenon, almost

Figure 11. Solid lines: the normalized total density of ion pairs before recombination. Dashed lines: initial distributions of ions over charge
separation in their ground (blue) and excited (red) states.

Figure 10. Concentration dependence of the theoretically calculated
Stern-Volmer law (solid line) compared to that for the stationary
fluorescence detected experimentally (points).

TABLE 2

c, M 0.16 0.32 0.64 0.90

A,ps-1 0.091 0.162 0.149 0.186
γ 0.89 1.00 2.18 2.46

Figure 12. Initial rates of ion accumulation Ṗexp ) A (.) compared
to the expected linear dependence ck0 (dashed line). The solid line with
a higher slope k̃0 (eq 3.2) represents the renormalized data linear in c.

P(t) ) γ(c)Pexp(t) (3.2)
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an exact frequency coincidence of light-absorbing transitions
from DA to D*A and (D*)+A- (Figure 1B) evidence in favor
of this hypophysis.

In just the same way, one can correct the further time
dependence of P(t) by using eq 3.2 in the whole time domain
available for Pexp(t). The results shown in Figure 13 confirm
that the initial linearity truly takes place for all concentrations
though in a limited time interval, t e τL. During this time, the
system moving down from q1

(n) approaches the crossing points
qR

(n) where recombination starts. This makes the subsequent
accumulation slower, and after hot recombination, responsible
for a sharp brake in P(t), gives way to the final recombination
of the thermalized ion pairs. The latter is the subject of the
Unified Theory (UT).

B. Unified Theory. Extending the usual UT1,9,10 to the case
of a double-channel ionization, we have to introduce the
densities of the ion pairs in their ground (µ(r,t)) and excited
states (µ*(r,t)), as well as that of the ground state product of
recombination (π(r,t)). They obey the extended UT equations
for irreversible recombination:

Here the operator of encounter diffusion in the attractive
Coulomb potential Uc(r) ) -rc/r is

where the Onsager radius rc ) e2/εT.
The rates of the ground state and excited ion pairs recombina-

tion are

WR
/(r) ) ∑

0

∞ UR
/(r)e-SSn

n! + UR
/(r)τ/e-SSn

exp[- (∆GR
/ + λ + pωn)2

4λT ]
(3.4b)

Here

where

and

The fractions of the initially created ions that survived hot
recombination via two parallel reaction channels are R(r) and
R*(r), respectively. They determine the shape and share of final
ion distributions, m̃0(r) ) µ(r,∞) and m̃*(r) ) µ*(r,∞), preceding
thermal recombination. To get them, one should integrate eqs
3.3a and 3.3a, setting WR ) L̂ ) 0:

They are smaller and different in shape than their precursors,
m0(r) and m*(r).8

C. Hot Recombination. The fractions of the survived
reactants in both channels were shown recently to be8

Here, YR
(n) is the recombination probability for the ion pair,

moving down along the D+A- surface, to recombine in points
qR

n (•), turning left and down to the DA state. Similarly, ỸI
(n) is

the ionization probability for a neutral pair moving down along
the DA surface to turn right, to the ion pair ground state in the
crossing points q̃I

(n) (degree; see Figure 1). These probabilities
first obtained in ref 27 and used in our previous article8 were
defined as follows:

Figure 13. Renormalized kinetics of the initial ion pairs accumulation
P(t) at different concentrations of TCNE. The straight lines are the
linear approximations of the initial kinetics (before recombination
starts).

∂µ
∂t

) RW0(r)n(r, t)N(t) + R/WR
/(r)µ/ - WR(r)µ + L̂µ

(3.3a)

∂µ/

∂t
) W/(r)n(r, t)N(t) - WR

/(r)µ/ + L̂µ/ (3.3b)

∂π
∂t

) (1 - R)W0(r)n(r, t)N(t) + (1 - R/)WR
/(r)µ/ +

WR(r)µ + D∆π (3.3c)

L̂ ) D

r2

∂

∂r
r2erc/r ∂

∂r
e-rc/r

WR(r) ) ∑
0

∞ UR(r)e-SSn

n! + UR(r)τ0e
-SSn

exp[- (∆GR + λ + pωn)2

4λT ]
(3.4a)

∆GR
/ ) ∆GR

/(σ) - T(rc

σ
-

rc

r ),

∆GR ) ∆GR(σ) - T(rc

σ
-

rc

r ) (3.5)

∆GR
/(σ) ) -∆E(σ) - ∆G/, ∆GR(σ) ) -∆E(σ) - ∆G0

UR(r) )
VR

2

p
exp(-2(r - σ)

L ) √π
√λT

UR
/(r) )

(VR
/)2

p
exp(-2(r - σ)

L ) √π
√λT

(3.6)

m̃0(r) ) R(r)W0(r)∫0

∞
n(r, t)N(t)dt ) R(r) × m0(r)

(3.7a)

m̃/(r) ) R/(r)WR*(r)∫0

∞
µ/(r, t)dt ) R/(r) × m/(r)

(3.7b)

R(r) ) ∏
n)0

nmax

(1 - YR
(n)) and R/(r) ) 1 - ∏

n)0

nmax

(1 - ỸI
(n))

(3.8)

Double-Channel Photoionization J. Phys. Chem. A, Vol. 113, No. 48, 2009 13537



where

are the slopes of the levels in the crossing points. Being
corrected in view of another λc, used in the present paper
compared to the previous one, they were used for calculations
of R and R* together with a multiphonon coupling

From the best fit of the theory to the experimentally measured
kinetics of ion accumulation and separation, the three varying
microscopic parameters of recombination (VR, VR*, and SR) can
be obtained, upon the assumption that the electronic tunnelling
length LR ) 1.24 Å for recombination remains the same as that
for the ionization reaction.

D. Fitting of the Thermalized Ions Recombination-
Separation. As a matter of fact, the whole system 3.3 was
solved numerically, but only accumulation and dissipation
of the ground state ion pair population, P(t) ) ∫[µ(r,t) +
µ*(r, t)]d3r/N0, detected experimentally, is available for fitting.
At high concentrations, the theory essentially overestimates the
survival probabilities of ions Pexp reported in the experimental
work28 as well as the free ion quantum yields φ ) Pexp(∞), that
is the experimentally obtained plateau. However, the shape of
the theoretical time dependence resembles the experimental one
at any c and fits it well when Pexp is substituted for one,
calibrated according to eq 3.2. The numerical multiplier γ
(specified in Table 2) essentially shifts up the experimental
curves for higher concentrations, up to their coincidence with
the theoretical predictions.

The results of fitting the theory (solid lines) to the γ-corrected
experimental data (degree) are shown in Figure 14. We failed
to choose the unique values from the widely varying recombina-
tion parameters, but surprisingly a rather good fit was achieved
with parameters identical to those for ionization:

The Onsager radius rc was taken to be 14 Å, which agrees
well with model estimations.

However, it remains unclear whether the present theory
equally overestimates the number of ions before and after
thermalization at high concentrations of TCNE or the photo-
conductivity method used in ref 29 underestimates this number,

when the quencher concentration c is high as it is assumed here.
The question is open for more detailed study of such a
concentration phenomenon.

To make the physical picture more transparent, let us compare
the distribution of ions survived in hot recombination, m̃(r) )
m̃0(r) + m̃*(r), with their initial distribution m(r) ) m0(r) +
m*(r), as well as their total numbers before and after hot
recombination:

As is seen from Figure 15, the hot recombination reduces
the density of the survived ions near the contact where the
backward electron transfer is more efficient. The total fraction
of initially born ions, ψ, and what remains from it after hot
recombination (thermalization), ψ̃, are listed in Table 3 together
with the fluorescence quantum yield.

Roughly speaking 2/3 of the initially born ions are subjected
to hot recombination and about 1/3 survive for subsequent
thermal recombination, assisted by encounter diffusion.

E. Free Ions Bulk Recombination. After ions are separated,
they continue to recombine in the bulk. The initial number of
free ions participating in a bulk recombination is given by the
height of the plateau reached by N((t) ) N0P(t) at the end of
the geminate stage. If the corresponding density of the free ions
is n( (0) ) N((1000 ps)/V ) (N0/V)φ, then further on n((t)
decreases with time due to only bulk recombination:

where the rate constant of the homogeneous charge recombina-
tion is

Here, rc ) e2/εT is the Onsager radius, and WR(r) is the rate
of thermal recombination via crossing points qR

(n) given in eq
3.4a. With the parameters listed in eq 3.11, it takes the form
shown in Figure 16. Though the thermal recombination,
proceeding in the normal Marcus region, decreases monoto-
nously with ion separation, even this dependence is not
exponential. One has to integrate it in eq 3.13 to get the
theoretical estimate of

This prediction can be inspected experimentally by studying
the bulk conductivity dissipation after photoionization.

IV. Conclusions

We launched here a new fitting for the experimental data on
photoionization of perylene by tetracyanoethylene in acetonitrile
solution, and the geminate recombination of ions, previously
undertaken in refs 6 and 8. It is based on the corrected energy
scheme (Figure 1) resulting from a direct estimation of the
reorganization energy, λc, from the available spectroscopic data.

The new fit of the initial quasi-static ionization accounting
for the vibrational relaxation and DSE provides us with
reasonable limitations on the strength of the electronic tunnelling

YR
(n) )

2πVRn
2 (r)

|A1n| [1 + 2πVRn
2 (r)( 1

|A1n|
+ 1

|A2n|)]-1

(3.9a)

ỸI
(n) )

2πVRn
2 (r)

|A2n
/ | [1 + 2πVRn

2 (r)( 1

|A2n
/ |

+ 1

|A1n
/ |)]-1

(3.9b)

A1n )
qR

(n) - 2λ
τL

, A2n )
qR

(n)

τL

A1n
/ )

q̃I
(n) - 2λ

τL
, A2n

/ )
q̃I

(n)

τL

VRn
2 (r) ) VR

2(r)
e-SRSR

n

n!
(3.10)

SR ) 2.5, VR ) 0.15 eV, VR
/ ) 0.01 eV (3.11)

ψ ) ∫m(r)d3r ) 1 - η and ψ̃ ) ∫ m̃(r)d3r

1
n((t)

) 1
n((0)

+ kRt (3.12)

kR ) ∫WR(r) exp(rc/r)d3r (3.13)

kR ) 1582 Å3/ps
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resulting in either ground or excited state RIP production. The
successful fitting of the subsequent diffusion-accelerated ioniza-
tion eliminates uncertainties as to the contribution of the two
competing channels and confirms that the forward electron
transfer in the present system is under diffusional control.
Moreover, the theory predicts what should be the quenching
kinetics in solutions with other viscosities (different encounter
diffusion). This conclusion can be inspected experimentally as

well as the diffusional dependence of the quenching radius,
RQ(D), presented in Figure 7.

The shapes of the two position-dependent ionization rates
were specified, and their sum was compared with an alternative,
exponential model of this quantity used in ref 25. The latter
was shown to approximate the sum of the two rates in a limited
range of distances near r ≈ RQ, but the model tunnelling length
appears to be too large (2.8 Å) unlike our realistic value, L )
1.24 Å. The free energy dependencies of the ionization rates
are also different in the present and model theories, though both
of them predict larger kinetic rate constants than the diffusional
Stern-Volmer constant in the system under study. Thus, the
diffusional nature of ionization is unambiguously established.

Figure 14. Ion accumulation-recombination kinetics data (degree) placed at our disposal by the authors of the experimental work28 and calibrated
by the factor γ(c) (Table 2). They are fitted by the present theory with parameters listed in eq 3.11 (solid lines).

Figure 15. Initial distributions of ions m(r) before thermalization (solid lines) and after it, m̃(r) (dashed lines).

TABLE 3

TCNE concentration, c 0.16 0.32 0.64 0.9
Fluorescence quantum yield, η 0.031 0.011 0.003 0.002
Initial ionization yield, ψ 0.967 0.989 0.996 0.998
Yield of thermalized ions, ψ̃ 0.372 0.366 0.328 0.312
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The quasi-static ion accumulation preceding hot recombina-
tion is predicted to be linear in time, as it is actually. However,
the slope of this linearity is scattered around the theoretical
kinetic rate Ṗ ) ck0. To eliminate this dispersion, it was assumed
that the ionic population obtained experimentally, Pexp, should
be corrected to restore the linearity in c, P ) γ(c)Pexp. After
such a correction, the subsequent hot recombination and the
following thermal relaxation of survived RIPs were fitted well
to the experimental data for four available concentrations. Using
the obtained fitting parameters, we calculated the space distribu-
tion of ions before and after hot recombination and were
convinced that only 1/3 of the initially created RIPs survive
for subsequent thermal recombination. As to free ions which
escape any geminate recombination, they continue to recombine
in the bulk with a predicted rate constant kR, which awaits
experimental verification (Figure 13).
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Figure 16. Nonexponential space dependence of ion recombination
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